Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen

Identifieur interne : 010C34 ( Main/Repository ); précédent : 010C33; suivant : 010C35

Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen

Auteurs : RBID : Pascal:01-0485812

Descripteurs français

English descriptors

Abstract

The oxidative dissolution rate of metacinnabar by dissolved O2 was measured at pH ∼5 in batch and column reactors. In the batch reactors, the dissolution rate varied from 3.15 (±0.40) to 5.87 (±0.39) × 10-2 μmol/m2/day (I = 0.01 M, 23°C) and increased with stirring speed, a characteristic normally associated with a transport-controlled reaction. However, theoretical calculations, a measured activation energy of 77 (±8) kJ/mol (I = 0.01 M), and the mineral dis-solution literature indicate reaction rates this slow are unlikely to be transport controlled. This phenomenon was attributed to the tendency of the hydrophobic source powder to aggregate and minimize the effective outer surface area. However, in a column experiment, the steady-state dissolution rate ranged from 1.34 (±0.11) to 2.27 (±0.11)x 10-2 μmol/m2/day (I = 0.01 M, 23°C) and was also influenced by flow rate, suggesting hydrodynamic conditions may influence weathering rates observed in the field. The rate of Hg release to solution, under a range of hydrogeochemical conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the dissolution rate due to the adsorption of released Hg(II) to the metacinnabar surface. The measured dissolution rates under all conditions were slow compared to the dissolution rates of minerals typically considered stable in the environment, and the adsorption of Hg(II) to the metacinnabar surface further lowered the Hg release rate.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0485812

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen</title>
<author>
<name sortKey="Barnett, Mark O" uniqKey="Barnett M">Mark O. Barnett</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory Oak Ridge</s1>
<s2>TN, 37831-6038</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Environmental Sciences and Engineering, University of North Carolina</s1>
<s2>Chapel Hill, NC, 27599-7400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chapel Hill, NC, 27599-7400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turner, Ralph R" uniqKey="Turner R">Ralph R. Turner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory Oak Ridge</s1>
<s2>TN, 37831-6038</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singer, Philip C" uniqKey="Singer P">Philip C. Singer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Environmental Sciences and Engineering, University of North Carolina</s1>
<s2>Chapel Hill, NC, 27599-7400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Chapel Hill, NC, 27599-7400</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">01-0485812</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0485812 INIST</idno>
<idno type="RBID">Pascal:01-0485812</idno>
<idno type="wicri:Area/Main/Corpus">010357</idno>
<idno type="wicri:Area/Main/Repository">010C34</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0883-2927</idno>
<title level="j" type="abbreviated">Appl. geochem.</title>
<title level="j" type="main">Applied geochemistry</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>adsorption</term>
<term>astatine</term>
<term>beryllium</term>
<term>carbon</term>
<term>dissolution</term>
<term>experimental studies</term>
<term>hydrochemistry</term>
<term>hydrodynamics</term>
<term>indium</term>
<term>iodine</term>
<term>mercury</term>
<term>metacinnabar</term>
<term>oxygen</term>
<term>pH</term>
<term>solution rates</term>
<term>sulfides</term>
<term>surface water</term>
<term>transport</term>
<term>weathering</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Sulfure</term>
<term>Metacinabre</term>
<term>Taux dissolution</term>
<term>Etude expérimentale</term>
<term>Oxygène</term>
<term>Astate</term>
<term>PH</term>
<term>Indium</term>
<term>Iode</term>
<term>Carbone</term>
<term>Transport</term>
<term>Dissolution</term>
<term>Béryllium</term>
<term>Mercure</term>
<term>Adsorption</term>
<term>Hydrodynamique</term>
<term>Altération météorique</term>
<term>Eau surface</term>
<term>Hydrochimie</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
<term>Iode</term>
<term>Carbone</term>
<term>Béryllium</term>
<term>Mercure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">The oxidative dissolution rate of metacinnabar by dissolved O
<sub>2</sub>
was measured at pH ∼5 in batch and column reactors. In the batch reactors, the dissolution rate varied from 3.15 (±0.40) to 5.87 (±0.39) × 10
<sup>-2</sup>
μmol/m
<sup>2</sup>
/day (I = 0.01 M, 23°C) and increased with stirring speed, a characteristic normally associated with a transport-controlled reaction. However, theoretical calculations, a measured activation energy of 77 (±8) kJ/mol (I = 0.01 M), and the mineral dis-solution literature indicate reaction rates this slow are unlikely to be transport controlled. This phenomenon was attributed to the tendency of the hydrophobic source powder to aggregate and minimize the effective outer surface area. However, in a column experiment, the steady-state dissolution rate ranged from 1.34 (±0.11) to 2.27 (±0.11)x 10
<sup>-2</sup>
μmol/m
<sup>2</sup>
/day (I = 0.01 M, 23°C) and was also influenced by flow rate, suggesting hydrodynamic conditions may influence weathering rates observed in the field. The rate of Hg release to solution, under a range of hydrogeochemical conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the dissolution rate due to the adsorption of released Hg(II) to the metacinnabar surface. The measured dissolution rates under all conditions were slow compared to the dissolution rates of minerals typically considered stable in the environment, and the adsorption of Hg(II) to the metacinnabar surface further lowered the Hg release rate.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0883-2927</s0>
</fA01>
<fA02 i1="01">
<s0>APPGEY</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. geochem.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BARNETT (Mark O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TURNER (Ralph R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SINGER (Philip C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Environmental Sciences Division, Oak Ridge National Laboratory Oak Ridge</s1>
<s2>TN, 37831-6038</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Environmental Sciences and Engineering, University of North Carolina</s1>
<s2>Chapel Hill, NC, 27599-7400</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1499-1512</s1>
<s7>4</s7>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20984</s2>
<s5>354000095838900030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0485812</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied geochemistry</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="FRE">
<s0>The oxidative dissolution rate of metacinnabar by dissolved O
<sub>2</sub>
was measured at pH ∼5 in batch and column reactors. In the batch reactors, the dissolution rate varied from 3.15 (±0.40) to 5.87 (±0.39) × 10
<sup>-2</sup>
μmol/m
<sup>2</sup>
/day (I = 0.01 M, 23°C) and increased with stirring speed, a characteristic normally associated with a transport-controlled reaction. However, theoretical calculations, a measured activation energy of 77 (±8) kJ/mol (I = 0.01 M), and the mineral dis-solution literature indicate reaction rates this slow are unlikely to be transport controlled. This phenomenon was attributed to the tendency of the hydrophobic source powder to aggregate and minimize the effective outer surface area. However, in a column experiment, the steady-state dissolution rate ranged from 1.34 (±0.11) to 2.27 (±0.11)x 10
<sup>-2</sup>
μmol/m
<sup>2</sup>
/day (I = 0.01 M, 23°C) and was also influenced by flow rate, suggesting hydrodynamic conditions may influence weathering rates observed in the field. The rate of Hg release to solution, under a range of hydrogeochemical conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the conditions that more closely approximated those in the subsurface, was 1 to 3 orders of magnitude lower than the dissolution rate due to the adsorption of released Hg(II) to the metacinnabar surface. The measured dissolution rates under all conditions were slow compared to the dissolution rates of minerals typically considered stable in the environment, and the adsorption of Hg(II) to the metacinnabar surface further lowered the Hg release rate.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E01A03</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Sulfure</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>sulfides</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Sulfuro</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Metacinabre</s0>
<s2>NZ</s2>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>metacinnabar</s0>
<s2>NZ</s2>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Metacinabrio</s0>
<s2>NZ</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Taux dissolution</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>solution rates</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Proporción material disuelto</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Oxygène</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>oxygen</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Oxígeno</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Astate</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>astatine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Astato</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>PH</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>pH</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>pH</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Indium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>indium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Indio</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Iode</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>iodine</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Iodo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Carbone</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>carbon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Carbono</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Transport</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>transport</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Dissolution</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>dissolution</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Disolución</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Béryllium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>beryllium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Berilio</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Mercure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>mercury</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Mercurio</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Adsorption</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>adsorption</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Adsorción</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Hydrodynamique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>hydrodynamics</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Hidrodinámica</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Altération météorique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>weathering</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Alteración meteórica</s0>
<s5>62</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Eau surface</s0>
<s5>63</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>surface water</s0>
<s5>63</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Agua superficie</s0>
<s5>63</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Hydrochimie</s0>
<s5>64</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>hydrochemistry</s0>
<s5>64</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Hidroquímica</s0>
<s5>64</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
<s0>ANS</s0>
</fC06>
<fN21>
<s1>344</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 010C34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 010C34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:01-0485812
   |texte=   Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024